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A ccording to the World Health Organization, 60% of 
all deaths, worldwide, can be attributed to chronic 
diseases such as diabetes, heart disease, stroke, and 

cancer; they are also a major cause of poverty and lack of 
economic development.1 As part of a multi-pronged effort to 
address this challenge, innovations in chronic care delivery 
are beginning to leverage advanced statistical and machine 
learning models and algorithms to obtain new insights into 
care quality, outcomes, and cost.2-4 Machine learning is the 
science of constructing algorithms that learn from large vol-
umes of data in order to facilitate decision making by gen-
erating potentially new insights; it has gained widespread 
implementation across many industries today.5 Just a few ex-
amples of machine learning applications are speech recogni-
tion, self-driving cars, and personalized online experiences.6-8 

Although innovations driven by machine learning have 
seen tremendous success,9,10 subsequently resulting in im-
proved service performance, productivity, and growth,11-13 
for a variety of reasons, the healthcare industry has been 
relatively slow to incorporate these techniques into decision-
support applications and to adapt to resulting changes.14-16 
For instance, in making treatment decisions, many clinicians 
may prefer to use clinical practice guidelines (CPGs) over 
predictions generated by machine learning algorithms—al-
gorithms which may seem like a “black box” with little rel-
evance to actual clinical decision making.17 However, many 
of the current clinical decision support capabilities, whether 
CPG-embedded electronic health record (EHR) interactivity 
or computerized provider order entry (CPOE) application, 
are designed by humans and target the “average patient.” 

As the Precision Medicine initiative states,18 we are now in 
an era in which clinical interventions need to be personalized 
and predictive, and so should decision support recommenda-
tions. To meet this objective, it is no longer sufficient to rely on 
CPGs, often created based on consensus opinions or random-
ized clinical trials that have strict enrollment criteria. Rather, 
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ABSTRACT

Objectives: Chronic diseases are common, complex, and 
expensive health conditions that can benefit from innovations 
in healthcare service delivery enabled by information technol-
ogy and advanced analytic methods. This paper proposes a 
data-driven approach, illustrated in the context of chronic kidney 
disease (CKD), to develop clinical pathways of care delivery from 
electronic health record (EHR) data. 

Study Design: We analyzed structured and de-identified EHR  
data from 2009 to 2013 of 664 CKD patients with multiple chronic 
conditions.

Methods: Machine learning algorithms were used to learn data-
driven and practice-based clinical pathways that cluster patients 
into subgroups and model the co-progression of their encounter 
types, diagnoses, medications, and biochemical measurements. 
Given a pattern of biochemical measurements, our algorithm 
identifies the most probable clinical pathways, and makes predic-
tions regarding future states, with and without temporal informa-
tion. CKD stages, their complications, and common medications 
are included in the clinical pathways.

Results: Using the EHR data of 664 patients who were initially in 
CKD stage 3 and hypertensive, we identified 7 patient sub-
groups—each distinguished primarily by the type of complica-
tions suffered by the patients. Our algorithm demonstrates fair 
accuracy (up to 44% and 75%, respectively) in learning the most 
probable clinical pathways and predicting future states associated 
with temporal patterns of biochemical measurements and patient 
subgroups. 

Conclusions: Data-driven clinical pathway learning summarizes 
multidimensional and longitudinal information from EHRs into 
clusters of common sequences of patient visits that may assist in 
the efficient review of current practices and identifying potential 
innovations in the care delivery process.
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with the tremendous amount of data being accumulated in 
EHRs from the enactment of the Health Information Tech-
nology for Economic and Clinical Health (HITECH) Act 
as part of the American Recovery and Reinvestment Act,19 
healthcare service delivery can also benefit greatly from ad-
vanced statistical and machine learning models and algo-
rithms that can learn potentially useful insights from large 
amounts of highly detailed data collected daily, as part of 
routine care delivered in multiple, diverse settings.

Traditional topics in machine learning include classifi-
cation and unsupervised learning.5 Classification refers to 
the method of labeling unknown data to target variables 
through training a classification model using labeled data. 
Logistic regression and naïve Bayes are examples of classifi-
cation algorithms.5 For example, Lee et al used logistic regres-
sion to predict 7-day mortality from heart failure in emergent 
care using initial vital signs, clinical and presentation fea-
tures, and laboratory tests.20 Unsupervised learning refers to 
the identification of latent groups in the data. Unlike classi-
fication, which is also called “supervised learning,” unsuper-
vised learning does not have true labels, typically does not 
have true labels, and users need to predefine the number of 
latent groups. K-means and hierarchical clustering are 2 of 
the most common unsupervised learning algorithms.5 

Zhang et al used a variant of the K-means clustering algo-
rithm to design more efficient order sets from historical order 
data in a pediatric inpatient setting.21 Order sets are groups 
of relevant orders traditionally clustered together by clini-
cal experts and used within CPOE; this is an example of a 
manually designed healthcare information technology appli-
cation that requires significant labor- and knowledge-inten-
sive effort for maintenance and update. In the same study, 
Zhang et al demonstrated that order sets can be created using 
machine learning algorithms, with the resulting data-driven 
order sets requiring less physical and cognitive workload in 
usage because the methods were trained to find the optimal 
combinations of orders that matched, with order data gener-
ated from actual work flow. In addition to these classical ap-

proaches, many advanced machine learning 
algorithms have been developed and applied 
over the years to facilitate a more efficient, 
safer healthcare system.22-25 

In this paper, we present a machine learn-
ing approach for learning the most probable, 
data-driven clinical pathways from the EHR 
data of patients with chronic kidney disease 
(CKD), and predicting the most probable 
upcoming interventions at any stage, given 
recent history. CKD is a chronic condition 
that currently affects more than 26 million 

US adults, with an additional 73 million at increased risk 
for the disease.26 It is also associated with increased risk for 
cardiovascular disease and acute kidney injury (AKI), and 
the majority of the patients also suffer from comorbidities 
such as hypertension and diabetes.26 Consequently, CKD 
management is complex and expensive, and a large pro-
portion of the US Medicare budget every year is allocated 
for the treatment of CKD.27 Specifically, the per person per 
year average cost of treating CKD was $23,128 in 2011—
more than twice the average cost of treating non-CKD 
conditions in the Medicare population ($11,103).27 With 
the cost increasing and quality of life decreasing as the dis-
ease progresses to end-stage renal disease (ESRD),27 there 
is a growing imperative to pursue innovations in service 
delivery and management of CKD and other chronic con-
ditions that may generate improved health outcomes, cost 
savings, and patient satisfaction.4 

Additionally, generating the highest quality scientific evi-
dence and associated practice recommendations for chronic 
conditions such as CKD is a continuing challenge for the 
healthcare field.3 One of the most recent CPGs for CKD was 
published by the National Kidney Foundation’s Kidney Dis-
ease Outcomes Quality Initiative in 2012, which is an update 
of its 2007 guideline. However, of its 7 key recommendations, 
only 2 recommendations received the highest grade from the 
Evidence Review Team of the guideline Work Group for 
strength of recommendation (“recommend” vs “suggest”), 
and the highest grade for quality of evidence (“high” vs 
“moderate,” “low,”  “insufficient”), while other recommenda-
tions received lower grades for strength of recommendations 
and for the quality of evidence.28 

In this paper, we propose that evidence from actual prac-
tices, particularly those that include large number of patients 
in local treatment settings over reasonable durations, may 
be used to assist guideline development. We present methods 
for knowledge extraction from data using machine learn-
ing algorithms, and demonstrate that such knowledge can 
be regarded as practice-based, data-driven clinical pathways. 

Take-Away Points
n    The availability of high-volume, time-stamped, and individual-level health data 
is beginning to facilitate clinical interventions that are personalized and predictive. 

n    Healthcare service delivery can benefit greatly from advanced statistical and 
machine learning models and algorithms that can learn personalized insights from 
electronic health record (EHR) data. 

n    Data-driven clinical pathways that describe the co-progression of encounter 
types, diagnoses, medications, and individual biochemical measurements can be 
learned from EHR data, using statistical and machine learning methods to support 
the review of current practices and innovate healthcare delivery approaches. 

n    Our proposed methodology is generalizable to other clinical conditions and can 
accommodate varying numbers of clinical and other relevant factors.
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Clinical pathways translate CPG recommendations into an 
actionable plan such as flow charts, and are used by more 
than 80% of US hospitals for at least 1 intervention.29 This 
research aims to develop clinical pathways not strictly based 
on CPGs, but practice-based evidence learned from data. An 
overall framework of our approach that supports a learning 
healthcare system is presented in Figure 1. 

METHODS
Prior Work

Data-driven clinical pathway learning has garnered 
research interest since the 1990s,30-38 but there is limited re-
search on machine learning approaches for the problem. 
Recently, Lakshmanan et al used a type of clustering al-
gorithm, called DBScan, to cluster patients’ history prior 
to pathway learning, and applied SPAM, an algorithm to 
find frequent patterns in pathways, to associate patterns 
with patient outcomes.33 Huang et al used topic model, 
a recently developed probabilistic method, for learning 
latent topics from documents, to discover clinical path-
way patterns from EHR event logs.38 Zhang et al modeled 
clinical pathways as Markov chains that included the co-
progression of multiple interventions and diagnoses, and 
visualized them to allow identification of variations in 
care and outcomes across latent patient subgroups.39 

In this paper, we combine clustering and temporal mod-
eling to elicit common clinical pathways from the data. 

Specifically, given patient characteristics and a sequence 
of laboratory observations from multiple laboratory tests, 
we illustrate methods to learn the most probable sequence 
of clinical interventions that are associated with the 
laboratory observations, and to make predictions about 
patients’ impending conditions as a result of the interven-
tions. This approach allows us to link patients’ biochemi-
cal responses with clinical interventions and with specific 
outcomes, thus providing a novel methodology for data-
driven clinical pathway learning.

Clustering of Patients
To accommodate the heterogeneity in the patient popu-

lation and improve model accuracy, we group patients ac-
cording to similarity of their clinical history prior to pathway 
learning and prediction. We expect patients’ pathways to 
branch out as their health conditions and corresponding 
treatments evolve in different ways. Therefore, prior to path-
way learning and prediction, we use hierarchical clustering to 
cluster patients’ pathways into subgroups according to lon-
gest common subsequence (LCS) distance measure.40 LCS is 
the longest subsequence that 2 sequences have in common, 
while preserving the order of occurrence of the items in the 
sequences, but items are possibly separated. LCS has been 
widely applied in biomedical research as a similarity measure 
used in trajectory analysis and protein sequence analysis.40 
The distance measure, dLCS, is then computed as the dif-
ference between the sum of the lengths of 2 sequences and 

n  Figure 1. Using Data-Driven Clinical Pathways in a “Learning” Care Delivery Environment

CPG indicates clinical practice guideline; EHR, electronic health record.
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twice their LCS. (Details are in the eAppendix, available at 
www.ajmc.com.) Hence, dLCS is affected by the length of the 
identified subsequence, and the lengths of both sequences; 
for example, given the same length of LCS, dLCS is bigger 
for 2 long sequences than 2 short sequences. Therefore, clus-
tering using dLCS allows us to group patients who not only 
share similarity in clinical interventions, but also have simi-
lar durations of treatment. The optimal number of clusters 
is determined using Silhouette, a measure commonly used 
in cluster analysis.41 In this study, we consider clusters that 
have 10 or fewer patients as outliers, and plan to evaluate 
rare events and exceptions in future research.

Model
Figure 2 illustrates our modeling scheme for learning 

the clinical pathways. Given the time stamps associated 
with intervention data recorded in the EHR, we assume 
that each state in the data-driven clinical pathway is sepa-
rated by at least 1 time unit (eg, day, week, month), and 
that each state may contain more than 1 type of interven-
tion. For example, it is typical for a CKD patient to have a 
follow-up visit in the clinician’s office, receive medication 
prescriptions, and have diagnostic codes assigned to the 
visit. Our data encoding anticipates such multidimen-
sional and longitudinal features in the data. We assign a 
unique label for each unique combination of interven-
tions occurring from a visit on the same day, such that pa-
tients’ clinical interventions that span multiple categories, 
such as diagnosis, medication prescription, and encounter 

type, can be transformed into 1-dimensional pathways, as 
shown in the top row in Figure 2. Naturally, these inter-
ventions are related to one another over time in varying 
degrees. For instance, interventions that occurred within 
6 months of each other may be more strongly correlated 
than those that occurred within 2 years of each other. 

In the context of CKD management, we assume that 
interventions at visit t+2 are dependent on activities at 
visit t+1 and t, as shown in the middle row in Figure 2. For 
analytical tractability, and reflecting actual practice in the 
management of many health conditions, the time inter-
vals between 2 consecutive visits are categorized as: 1) less 
than 3 months, 2) greater than 3 but fewer than 6 months, 
or 3) at least 6 months. These assumptions are practice- 
and condition-specific,3 but can be readily modified for 
different settings. Patients’ biochemical conditions, as re-
flected by their laboratory observations, are assumed to 
be influenced by the interventions, as shown in the bot-
tom row in Figure 2. For the problem of clinical pathway 
learning described in this study, our goal is to learn the 
most probable sequence of clinical interventions given 
to patients with a particular trajectory of biochemical re-
sponses. Similarly, the prediction problem is to infer the 
most probable imminent interventions in the next state—
most importantly, diagnostic codes—for these patients. 

We model this treatment process as a hidden Markov 
model (HMM). HMM is a statistical model with a wide range 
of applications, such as in speech recognition and RNA se-
quence analysis.42 It is defined by 5 elements: sequence of hid-

n  Figure 2. Modeling the Treatment Process
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den states, sequence of observations, state 
transition probability distribution, observa-
tion probability distribution, and initial state 
distribution.43 HMM is used to represent a 
process in which a sequence of observations 
is generated, and each observation is trig-
gered by an underlying process that is hid-
den to us. For example, given a sequence of a 
patient’s body temperatures, we may assume 
that the patient’s health condition is affecting 
his or her body temperature. Therefore, the 
sequence of body temperatures form the ob-
servations in HMM, and health conditions 
represent HMM’s sequence of hidden states. 

The sequence of hidden states in an 
HMM has a first-order Markov property, which states 
that the current state only depends on the previous state.44 
Therefore, we regard the middle row in Figure 2 as the 
sequence of hidden states and the bottom row as the se-
quence of observations. Parameters of the HMM, such 
as transition probabilities of hidden states in the Markov 
chain, are learned from the data using the expectation-
maximization (EM) algorithm.43 Given HMM parameters, 
we can perform both the clinical pathway learning and 
prediction tasks through HMM decoding, which calculates 
the sequence of hidden states with the highest probability 
given the sequence of observations and the probability dis-
tribution of the model. Details of the model and algorithm 
are described further in the eAppendix and prior studies.39 

RESULTS
Descriptive Statistics

We demonstrate the methodology using a real-world 
data set of 664 patients, with visits from 2009 to 2013 ex-
tracted from the EHR, who suffered from CKD and associ-
ated complications. The gender ratio is nearly equal. Over 
67% of the patients are aged at least 70 years, and nearly 
95% are Caucasian. Components considered as part of clin-
ical pathways and the number of unique patients who had 
each component in their EHR are listed in Table 1. These 
components were selected for their relevance in CKD man-
agement, per consultation with clinicians, but can be ex-
tended to include additional details. All 664 patients had 
initial diagnoses of CKD stage 3 and hypertension, but not 
diabetes, and none of the patients had anemia or hyper-
parathyroidism initially. These patients either progressed 
to advanced CKD stages and ESRD, or improved to CKD 
stages 1 and 2. Most of them subsequently developed some 
of the complications listed in Table 1. 

Clustering of Patients
The number of clusters, k, was determined to be 7 using 

the highest silhouette value (0.189) from hierarchical clus-
tering. Table 2 describes the characteristics of each group 
in detail, indicating that hierarchical clustering using dLCS 
was able to divide patients into subgroups that differ on 
treatment frequency, duration, and outcome at the end 
of the study period. For example, 95% of the patients in 
subgroup 5 showed improvement in their conditions at the 
end of the study period, while none worsened, after being 
in the clinic for an average of 26.9 months. Subgroup 3 is 
the largest subgroup, and it also has the smallest average 
dLCS, suggesting that patients are more similar to one an-
other compared with other subgroups. Subgroup 2, which 
needs to be investigated further, had a mixture, with 14% of 
patients who improved and 20% who worsened. The final 
column in Table 2 lists complications of CKD that the ma-
jority of patients suffer from in each group.

Clinical Pathway Learning and Prediction
Table 3 summarizes the accuracies associated with predict-

ing the imminent interventions and diagnoses, such as pre-
scription of diuretics and episodes of AKI, and learning the 
most probable pathways for sample subgroups 3, 4, and 5. 
We chose these 3 subgroups because of their larger subgroup 
sizes, and interesting final outcomes at the end of the study. 
We tested the accuracies using the most common sequence 
of laboratory observations (LOs) from 3 consecutive visits, 
and the number of patients who experienced such patterns 
is listed under the column, “Number of patients who had 
LOs.” Training and testing were performed through a vari-
ant of the leave-one-out cross-validation method.45 Learning 
and prediction were done with respect to the most common 
sequence of LO in each subgroup. It is interesting to note 
that the common biochemical patterns in subgroups 3 and 4 

n  Table 1. Clinical Pathway Components

Category Component (number of unique patients)

Encounter type Office (664), hospital (99), education (28)

Diagnosis

Main diagnoses: CKD stage 1-5 (7, 107, 664, 87, and 4, 
respectively), ESRD (18), hypertension (664), acute kidney 
injury (48)

Complications: hyperparathyroidism (311), anemia (296), 
proteinuria (149), hyperkalemia (118), acidosis (63), hyper-
phosphatemia (23), glomerulonephritis (24), urinary obstruc-
tion (20), volume depletion (7), rhabdomyolysis (1)

Medication (drug 
class)

Angiotensin-converting enzyme inhibitors (94), angiotensin 
II receptor blockers (75), diuretics (133), statins (85)

Laboratory test Albumin (664), calcium (664), creatinine (664)

CKD indicates chronic kidney disease; ESRD, end-stage renal disease.
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are the same, but the model identified different clinical path-
ways for these 2 groups, which require further examination. 
“Pathway with time”/“Pathway without time” measure ac-
curacy of learning the entire pathway, including/not includ-
ing the actual time duration between 2 visits, respectively. 
Similarly, “Future visit with time”/“Future visit without 
time” measure the prediction accuracy for patient’s future 
interventions, with/without time durations between visits. 
Each state variable contains information on the presence 
or absence of 3 encounter types, 19 diagnoses, and 4 drug 
classes, in addition to 3 different durations between visits. 
Therefore, the probability of accurate learning and predic-
tion, on a random try, is extremely low compared with the 
results from our algorithm. 

We also examined the false negative and false positive rates 
in the prediction of an imminent condition such as AKI. We 
define a false negative to be a case where patients’ CKD stages 
are worse than predicted, or patients developed AKI, which 
our methods failed to predict. A false positive is defined as 
patients’ CKD stages being better than predicted, or predic-
tion of AKI when no AKI developed in reality. We include 
AKI in this analysis because it is a serious adverse outcome: 
it often requires hospitalization and can be fatal.46 We were 
able to obtain false-positive and false-negative rates that are 
as low as 0%, although this result needs to be validated using a 
much larger sample. Nevertheless, the learning and prediction 
algorithms show promise in identifying common pathways of 
treatments, but these need to be analyzed further to better de-
lineate effective interventions in the various subgroups. 

DISCUSSION
This paper provides a brief overview of machine learning 

approaches to assist medical decision making, and introduc-

es a methodology, as well as an application that illustrates 
the development of data-driven clinical pathways through 
mining of EHR data. This approach may facilitate timely 
extraction of potential new evidence that could become the 
basis for new clinical trials, and may also serve as “shared 
baselines” to be used within a local practice for work flow 
and population health management.47 Patient-focused ap-
plications derived from our research, particularly those that 
visualize the clinical pathway and provide related patient-
oriented recommendations and educational resources, may 
enhance patients’ understanding of their diseases and treat-
ments, thus facilitating shared decision making. 

An important ongoing study is to develop prediction 
models for other significant outcomes of interest in the 
management of CKD and its complications. Also, we need 
to evaluate these data-driven clinical pathways, especially 
their divergence and rare events, and their predictions with 
input from clinical professionals. As a growing number 
of healthcare organizations pilot new care delivery and 
payment models, such as the accountable care organiza-
tions,48  exploring disease trajectories that incorporate the 
interactions of clinical interventions and their associated 
outcomes may also provide useful insights on the cost ef-
fectiveness of treatments, which organizations can leverage 
for implementing innovative care delivery practices. 

A crucial prerequisite for success in the application of 
advanced machine learning methods to healthcare deliv-
ery is data quality. It is not uncommon for computational 
scientists to spend significant effort in cleaning EHR data 
before analysis. In addition, even after months of pro-
cessing, there are often still missing data and errors, some 
arising from the mismatch between actual work flows and 
process assumptions, subjecting the analytical results to 
bias. Such inefficiency can be minimized by careful obser-

n  Table 2. Patient Subgroup Characteristics

Group
Patients, 

n

Visits, m 
(minimum, 
maximum)

Average 
dLCS

Average Treatment 
Duration (months)

Improved  
Patients, n (%)

Worsened  
Patients, n (%)

Common 
Complications 

1 77 2, 14 7.0 31.1 1 (1%) 8 (10%)
Hyperparathyroidism,

proteinuria

2 149 2, 15 6.3 19.1 21 (14%) 30 (20%) Hyperparathyroidism

3 219 2, 17 4.2 29.8 2 (1%) 9  (4%) None

4 82 2, 15 5.4 24.7 2 (2%) 10 (12%)
Anemia, 

hyperparathyroidism

5 41 2, 12 5.0 26.9 39 (95%) 0 (0%) None 

6 51 2, 16 5.7 27.4 3 (6%) 5 (10%) Proteinuria 

7 45 2, 18 5.9 28.2 0 (0%) 5 (11%) Anemia

dLCS indicates longest common subsequence distance measure; m, minutes.



VOL. 21, NO. 12	 n  THE AMERICAN JOURNAL OF MANAGED CARE  n	 e667

Innovations in Chronic Care Delivery

vation and understanding of the care delivery context, 
and planning of the data storage with a range of options 
available depending on the data size.49 At the same time, 
methods have been developed, such as imputation and 
approximate inference algorithms, that can accommodate 
missing data. For example, in this paper, we used the EM 
algorithm to infer the parameters of HMM. Furthermore, 
diversity is innate to most healthcare data, and we found 
it to be one of the biggest challenges in accurately infer-
ring clinical pathways, requiring large amounts of data 
and robust methods for analysis and inference. In this pa-
per, we examined encounter type, diagnosis, medication 
prescriptions, and biochemical measurements, but our 
data representation is flexible with regard to the number 
of clinical factors of interest. Therefore, when sufficient 
curated data becomes available, factors such as medical 
expenses and behavioral information can also be incor-
porated to enrich the learned pathways and personalized 
predictions of health and cost outcomes. 

CONCLUSIONS
This paper presents additional promising evidence of 

the potential of machine learning applications for clinical 
decision making. We develop and demonstrate a meth-
odology to facilitate more targeted management of pa-
tients with complex chronic conditions using data-driven 
clinical pathways. Clinical pathways are learned from a 
healthcare organization’s EHR data by summarizing mul-
tidimensional clinical history as chronologically organized 
sequences, capturing information on the co-progression of 

encounter types, diagnoses, medications, and biochemi-
cal measurements. Further, we link clinical pathways to a 
few outcomes within subgroups of patients with reason-
able accuracy using hierarchical clustering and HMM. 
Applying our methodology to relevant EHR data on 664 
patients with CKD stage 3 and hypertension, we identify 
clinical pathways that may be compared with current CPG 
recommendations in future studies, and contribute to the 
development of shared-baseline within hospitals. These 
methods and broad findings from EHR data are general-
izable and can be adapted to other clinical conditions to 
support efficient review of treatments and outcomes and 
to aid clinical professionals and patients in making more 
informed treatment and management decisions.
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Pathway 
With  
Time

Pathway 
Without 

Time

Future  
Visit With  

Time

Future  
Visit Without  

Time

False-
Negative 

Rate

False- 
Positive 

Rate

3
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eAppendix 

 

This appendix provides some additional details associated with representing time-stamped, high 

volume, and granular electronic health record (EHR) data, our modeling approach using hidden 

Markov model (HMM), and grouping patients using hierarchical clustering. 
 

A1. Representation 

An extract of the EHR describing a patient’s visits is shown in the eAppendix Table. We 

model each visit, V, as a list of clinical activities drawn from 4 major components, as follows:  

!:#{%&'&(#)*+),'-; #/&012,'&'; #3-/&40(&,2; #)+,4-/*+-}!!. 
 

Laboratory activity is not part of V, as explained in section 2.3. Each unique V is given an 

encoding label, such as V1: {Office; CKD stage 3, hypertension; diuretics; Doppler}, and V2: 

{Education; CKD stage 4, hypertension, diabetes; not applicable (N/A); N/A}. Therefore, a 

patient’s (p’s) sequence of visits, Qp, can be represented using the relevant combinations of 

encoding labels alone, in the order in which the visits occur, such as V1-V2-V1-V3. The 

numbering in the encoding labels simply distinguishes one unique visit from another, and does 

not represent temporal factors. For example, a sequence may be V2-V2-V1, depending on the 

actual visit contents of the patient. For clarity, some V-labels, such as arb873, start with 

abbreviated name of the drug class, such as angiotensin II receptor blockers, prescribed from the 

visit.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Table. EHR Extract for a Patient’s Visit 

Date Category Entry Laboratory Results 

2/1/12 Visit 

Purpose 

Office Calcium = 8.4-9.5 mg/dL 

Creatinine = 1.2-1.6 mg/dL 

Hemoglobin = 13.5+ g/dL  

  

Procedure N/A 

Medication Angiotensin-converting-enzyme 

(ACE) inhibitors, diuretics, statins 

Diagnosis Acute kidney injury, chronic 

kidney disease (CKD) stage 3, 

hypertension 

5/1/12 Visit 

Purpose 

Hospital Calcium = 8.4-9.5 mg/dL 

Creatinine = 1.6-2.2 mg/dL 

Hemoglobin = 13.5+ g/dL Procedure Renal ultrasound 

Medication ACE inhibitors, diuretics, statins 

Diagnosis AKI, CKD stage 3, hypertension 

6/1/12 Visit 

Purpose 

Office Calcium = 8.4-9.5 mg/dL 

Creatinine = 1.6-2.2 mg/dL 

Hemoglobin = below 13.5 g/dL Procedure N/A 

Medication ACE inhibitors, statins 

Diagnosis CKD stage 3, hypertension, 

anemia 

 

 

A2. Model 

The problem of clinical pathway learning can be stated as follows: Given p patients, each 

having !" !! = 1,…M visits, and an associated set of biochemical measurements, (a) learn the most 

probable course of treatment for patients with a certain pattern of biochemical changes, and (b) 

predict the most probable future state of a patient’s diagnosis and/or treatments. 



Each patient’s visits can be chronologically ordered into a sequence using the visit 

contents and their representation outlined in A1. So, collectively for p patients, there are p 

sequences. In this paper, we model such sequences of visits as a Markov chain.1 A Markov chain 

is a sequence of random variables with memory-less property. In a first-order Markov chain, 

each state in the Markov chain depends only on its previous state. Hence, we make an 

assumption that treatment decisions are made mostly based on information from 2 previous 

visits, which corresponds with accepted practices in chronic disease management at the study 

site. Instead of modeling a second-order Markov chain, we create state variables in which each 

variable is a transition between 2 visits, such as V1-V2, and V2-V3. We also encode temporal 

information in our state variables, such that transitions that occurred less than 3 months, 3 to 6 

months, and at least 6 months apart can be differentiated. The state variable space for the Markov 

chain can be described as VV = (VV1, VV2, …., VVs), where VV1:{V1-V2 in less than 3 

months} and VV2: {V1-V2 in 3 to 6 months}, and so on, with s such possible transitions. The 

numbering in the encoding labels, such as “VV1” and “VV2”, is only to distinguish each VV 

from one another in the set of labels and does not represent time. To illustrate the idea, an actual 

sequence of VV may be: VV1-VV3-VV1, which translates into: {V1-V2 in less than 3 months}-

{V2-V1 in at least 6 months}-{V1-V2 in less than 3 months}. A patient p’s sequence Qp can be 

represented both in terms of V-labels and of VV-labels.  

The Markov chain considered here is time-homogeneous, meaning that the transition 

probability is independent of the state. Hence we make the assumption that the treatment regime 

is time-invariant. A time-homogenous Markov chain allows the calculation of the state transition 

probability distribution, which is the probability of a state transitioning to itself or other states in 

the chain.  

 

A3. Modeling Treatment Process as HMM 

The treatment process can be modeled as an HMM defined by 5 elements: sequence of 

hidden states, sequence of observations, state transition probability distribution, observation 

probability distribution, and initial state distribution.2 Figure 2 from the main text depicts this 

treatment process. The top row 1 describes the actual sequence of visits for each patient, 

represented by V-labels (Vi), and the middle row is the sequence of hidden states, represented by 

VV-labels (VVj), which we model as a Markov chain as described in A2. The bottom row is a 



sequence of biochemical measurements (ok), associated with each visit. In an HMM, the 

sequence of observations is visible, and each observation is dependent only on its corresponding 

hidden state in the sequence of hidden states. Observation probability distribution is the 

probability that observation !" !! is emitted from hidden state VVj. Initial state distribution is the 

distribution of each state in the first time unit. The solid arrows in Figure 2 show the direct 

relationships modeled in the HMM, and the dotted lines show the implicit but clinically relevant 

relationships in the model. HMM takes into account sampling bias, transition probability of 

hidden states, and probability of each hidden state emitting observations, such that learning and 

predictions can be more applicable to future data. In this paper, we accept the HMM assumption 

that observations at time t are only dependent on the hidden state at time t, but we realize that 

observations may in fact have an association of the hidden state at time t+1. Such structure can 

be tested using alternate models in future studies. Since the structure of the model is for now 

assumed to be known from the data that contains missing values, the estimation of parameters !*!! 
is performed using the EM algorithm,3 assuming that each sequence Qp of patient p is 

independent. 

 

A4. Clinical Pathway Learning and Prediction  

Clinicians may treat differently patients who come with similar laboratory observations 

due to a variety of reasons including comorbidities, medications, and practice variations. The 

treatments, in turn, will directly affect patients’ biochemical data. Hence, we are interested in 

learning the most probable sequence of hidden states as clinical pathways that reflect such 

structural relationships. Given a sequence of observations ("#, … , "&)!!, the most probable 

sequence of states is found using the Viterbi algorithm, a dynamic programming algorithm for 

decoding the most probable sequence of hidden states in HMM.4 In addition, as shown in Figure 

2, the set-up of the Markov chain state variables VVj allows not only identification of the most 

probable sequence of hidden states, but also prediction of future visit in the actual visit sequence 

with Vi. Therefore, decoding a state in the Markov chain automatically reveals the content of the 

2 visits associated with this state, one known and one unknown, and the time difference between 

these 2 visits.  

Each set of biochemical measurements contains measurements from multiple laboratory 

tests. They are discretized into appropriate ranges, and combined as one variable, to be a single 



observation in the HMM. If patients had multiple measurements of the same laboratory test, such 

as creatinine = 2.0 mg/dL and creatinine = 2.6 mg/dL in 2 separate readings, we take the average 

of the 2, 2.3 mg/dL, and categorize the average value into its valid range. In order to select 

appropriate sequence of measurements, we use Sequential Pattern Discovery using Equivalence 

classes (SPADE), a type of frequent sequence mining technique.5 This technique finds patterns 

of biochemical measurements with high support. Support is the percentage of patients who have 

a given pattern in their sequences.  

To evaluate the model, we apply a modified version of the leave-one-out cross-validation. 

In each iteration, we train the model using all patients who have had the pattern of interest, 

except for one. Then we evaluate the pathways and predictions against the test patient. This 

process is repeated until we have test results for all patients who have had the pattern of interest, 

and we report the average prediction accuracy, false negative rate, and false positive rate. 

 

A5. Clustering Metric 

We use hierarchical clustering to cluster patients into subgroups. Distance matrix used in 

clustering contains longest common subsequence (LCS) distance between each pair of patient 

sequences represented with V-labels.6 Each patient has one and only one sequence. LCS is the 

longest subsequence that each pair of patient sequences, (!", !$ !!), where 1 ≤ #, % ≤ &!!,!" ≠ $!!, and 

P is the number of patients, have in common, while preserving the order of occurrence of each 

item in the sequence, but possibly separated.  

!"# $%, $' = max , : , ∈ # $%, $' !, 
where |u| is the length of the common subsequence for the pair of sequences (!", !$ !!), S(!", !$ !!) is 
the nonempty set of common subsequences of sequences !" !!and !" !!. LCS distance measure, 
dLCS, is defined as: 

!"#$ %&, %( = * %& +* %( ,*2"#$ %&, %( !. 
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